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ΠΕΡΙΛΗΨΗ 

Στην παρούσα εργασία μελετάται η επίδραση της μικροδομής του υλικού στη δυναμική 

συμπεριφορά επίπεδων δικτυωμάτων. Δεδομένου ότι η κλασική ελαστικότητα δεν επαρκεί 

για την περιγραφή κατασκευών με διαστάσεις συγκρίσιμες με χαρακτηριστικά της 

μικροδομής τους, είναι απαραίτητη η εισαγωγή θεωριών ελαστικότητας ανωτέρας βαθμίδας. 

Στην παρούσα εργασία, χρησιμοποιείται η ελαστική θεωρία βαθμίδος της τροπής με την 

πλέον παραδοχή ότι η παράβλεψη των επιπλέον βαθμών ελευθερίας που αυτή εισάγει μας 

δίνει παραπλήσια αποτελέσματα με πολύ μικρή απόκλιση. Η ανάλυση πραγματοποιείται με 

τη μέθοδο των πεπερασμένων στοιχείων και χρήση γραμμικών συναρτήσεων σχήματος, 

αποφεύγοντας την υπολογιστική επιβάρυνση κατά τη χρήση των ακριβών συναρτήσεων 

σχήματος. Η επιρροή της θεωρίας βαθμίδος της τροπής εμφανίζεται με την εισαγωγή του 

χαρακτηριστικού μήκους στην διαφορική εξίσωση που διέπει το πρόβλημα. Σε όλες τις 

περιπτώσεις εξετάζεται η επιρροή της μικροδομής του υλικού και χρήσιμα συμπεράσματα 

προκύπτουν από τη μελέτη της δυναμικής συμπεριφοράς τους. 
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ABSTRACT 

In this study, the influence of the material’s microstructure on the dynamic behavior of planar 

trusses is investigated. Since classical elasticity (CE) theory is insufficient to accurately 

describe the mechanical behavior of structures whose dimensions are comparable to those of 

their microstructure, higher-order elasticity theories are required. In this work, the strain 

gradient elasticity (SGE) theory is employed, under the assumption that neglecting the 

additional degrees of freedom it introduces yields similar results with minimal deviation. The 

analysis is conducted using the finite element method with linear shape functions, thus 

avoiding the computational burden associated with the exact shape functions. The impact of 

the gradient elasticity theory is reflected by introducing the characteristic length into the 

governing differential equation. In all cases, the influence of the material’s microstructure is 

examined, and valuable conclusions are drawn regarding their dynamic behavior. 

 

Keywords: Strain gradient elasticity, Finite Element Method, Material’s Microstructure, Planar 

trusses, Eigenfrequencies, Mode shapes 

 

1 INTRODUCTION 

Strain gradient elasticity (SGE) theories enhance classical elasticity (CE) by incorporating 

higher-order strain terms, enabling the modeling of size-dependent mechanical behaviors. While 

CE assumes stress at a point is a function of local strain only, SGE theories account for strain 

gradients, making them particularly effective in capturing microstructural effects at nano- and 

micro-scales. Recently, there has been growing interest in applying these theories to meso- and 

macro-scale structures for refined analysis across broader engineering applications. In structural 

mechanics, especially for bars and beams, classical models like Euler–Bernoulli and Timoshenko 

often fail to capture size effects, leading to discrepancies in predicted behavior. SGE-based 
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formulations address these shortcomings and have demonstrated improved accuracy in analyzing 

composite materials [1], pretwisted beams [2], cellular beams [3], and flexoelectric beams [4]. 

This study investigates the static and dynamic response of planar trusses using the finite element 

method within the simplified, engineering-oriented SGE framework developed by Sulem and 

Vardoulakis [5]. This SGE theory, as demonstrated by Giannakopoulos et al. [6], combines ease 

of implementation with improved validity, making it well-suited for practical applications. It has 

been successfully applied to bar tension [7], beam bending and stability [8], beam dynamics [9], 

cantilever bending and cracked bar problems [10], and Timoshenko beam analysis [11]. While 

most finite element (FE) formulations for strain gradient elasticity (SGE) have focused on bars 

and beams [12–17], planar trusses have received comparatively little attention. To date, only 

Akintayo [18] and Tsiatas et al. [19] addressed planar trusses, developing a two-node bar element. 

The latter formulation adopts the elastic node approach and introduces a gradient bar element 

with four degrees of freedom: two classical and two non-classical. The classical degrees of 

freedom represent axial displacements, whereas the non-classical ones correspond to axial strains. 

In the present study, we extend the fundamental assumption of trusses—that members are pinned 

and therefore transmit only axial forces, not moments—by further postulating that axial strains 

at the member ends are also constrained. Specifically, the axial strains at the bar ends are 

prescribed a priori to be zero, thereby reducing the active degrees of freedom to the classical ones 

alone. Within this framework, the rigid node approach of SGE yields the same number of degrees 

of freedom as the CE theory, differing only in the modified stiffness to account for microstructural 

length effects. The method is straightforward to implement and produces static and dynamic 

results that closely match those from the elastic node formulation [19]. Additionally, comparisons 

with classical elasticity (CE) using consistent and lumped mass matrices provide valuable 

insights. 

2 GRADIENT TRUSS ELEMENT: THE RIGID NODE APPROACH 

Building on the work of Tsiatas et al. [19], the rigid node assumption is adopted by enforcing 

zero axial strains at the bar ends. Under this assumption, the stiffness matrix of a planar gradient 

truss element—characterized by length 𝐿𝑒, cross-sectional area 𝐴𝑒, modulus of elasticity 𝐸𝑒, and 

material density 𝜌𝑒—is expressed as: 

k𝑒
𝑃𝑇 =

𝐸𝑒𝐴𝑒

𝐿𝑒 [1 − 2𝜅𝑒 tanh (
1

2𝜅𝑒
)]

[

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

], (1) 

where 𝜅𝑒 = 𝑔/𝐿𝑒 being the ratio of the microstructural length, 𝑔, over the element’s length, 𝐿𝑒. 

To investigate the influence of the material microstructural length parameter 𝑔 on the dynamic 

behavior of planar trusses, both the consistent and lumped mass matrices of the CE theory are 

employed. The consistent mass matrix in CE theory is expressed as: 
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m𝑒
𝐶𝐸,𝑐𝑜𝑛 =

𝜌𝑒𝐴𝑒𝐿𝑒

6
[

2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2

], (2) 

while the corresponding lumped mass matrix simplifies to: 

m𝑒
𝐶𝐸,𝑙𝑢𝑚 =

𝜌𝑒𝐴𝑒𝐿𝑒

2
[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]. (3) 

Finally, to incorporate the orientation of each element, a transformation matrix is employed. The 

direction cosines, cos 𝜑𝑒 and sin 𝜑𝑒, facilitate the conversion of local generalized nodal forces, 

f𝑆
𝑒, into the global coordinate system, f𝑆̅

𝑒, as: 

f𝑆
𝑒 = R𝑒

𝑃𝑇f𝑆̅
𝑒

, (4) 

where 

R𝑒
𝑃𝑇 = [

cos 𝜑𝑒 sin 𝜑𝑒 0 0
− sin 𝜑𝑒 cos 𝜑𝑒 0 0

0 0 cos 𝜑𝑒 sin 𝜑𝑒

0 0 − sin 𝜑𝑒 cos 𝜑𝑒

], (5) 

is the transformation matrix of the truss element. 

It is worth noting that Akintayo [18] also adopted the rigid node assumption, albeit by enforcing 

a different set of boundary conditions, which yields the following stiffness matrix: 

k𝑒
𝑃𝑇,𝐴𝐾 =

𝐸𝑒𝐴𝑒

𝐿𝑒 [1 − 𝜅𝑒 tanh (
1

𝜅𝑒
)]

[

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

]. (6) 

3 STATICALLY DETERMINATE GRADIENT TRUSS  

In this section, we analyze a statically determinate gradient truss (see Figure 1). Each truss 

member has a circular cross-section with a diameter of 𝐷 = 20 mm and material properties of 

𝐸 = 210 GPa, 𝜌 = 7850 kg/m. The truss is supported by pins at nodes 1 and 3, where all 

geometric boundary conditions are zero, while nodes 2 and 4 have all their degrees of freedom 

(DoF) unrestrained and free to move.  

We begin with a static analysis under a load of 𝑃 = 100 kN. The resulting displacements at 

various DoFs are summarized in Table 1 for different values of the microstructural length 𝑔. For 

comparison, displacements predicted by classical elasticity (CE) theory, obtained using a finite 

element (FE) formulation, show excellent agreement with strain gradient elasticity (SGE) theory 
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results when 𝑔 = 0.001 m. Overall, as 𝑔 increases, displacements decrease, reflecting the 

stiffening effect of the truss. 

To further highlight the deviations among the different theoretical approaches, Table 2 reports 

the displacements at the same DoF for 𝑔 = 0.5 m. The results demonstrate that the present study 

provides values closer to those of the more accurate elastic node approach [19], compared to the 

formulation of Akintayo [18]. 
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Figure 1: Geometry and loading of the gradient truss. 

 

Table 1: Displacements (m) of the gradient truss at various DoF for various values of the  

microstructural length 𝑔 (m). 

DoF FEM 𝑔 = 0.001 𝑔 = 0.1 𝑔 = 0.2 𝑔 = 0.3 𝑔 = 0.4 𝑔 = 0.5 

𝑢3 -0.006821 -0.006816 -0.006366 -0.005911 -0.005457 -0.005004 -0.004559 

𝑢4 -0.028799 -0.028787 -0.027511 -0.026223 -0.024934 -0.023647 -0.022366 

𝑢8 -0.034863 -0.034847 -0.033271 -0.031679 -0.030088 -0.028498 -0.026915 

 

Table 2: Displacements (m) at various DoF for 𝑔 = 0.5 (m). 

DOF 
Rigid node  

Akintayo [18]  

Rigid node  

Present study 

Elastic node 

Tsiatas et al. [19]  

𝑢3 -0.005684 -0.004559 -0.004735 

𝑢4 -0.025578 -0.022366 -0.022880 

𝑢8 -0.030884 -0.026915 -0.027671 

 

The dynamic response of the gradient truss was also investigated. The first four natural 

frequencies, 𝜔𝑛 (rad/s), for various values of 𝑔 are presented in Table 3, employing the 

consistent mass matrix of the CE theory. As 𝑔 increases, 𝜔𝑛 generally rises, although the effect 

is less pronounced at lower frequencies. For further comparison, Table 4 presents the first four 

natural frequencies for 𝑔 = 0.5 m. Again, the present formulation predicts the fundamental 

frequency more accurately than Akintayo’s formulation [18]. 
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Table 3: First four natural frequencies 𝜔𝑛 (rad/s) of the gradient truss for various values of the 

microstructural length 𝑔 (m). 

𝜔𝑛 FEM 𝑔 = 0.001 𝑔 = 0.1 𝑔 = 0.2 𝑔 = 0.3 𝑔 = 0.4 𝑔 = 0.5 

1 577.875 578.009 591.759 606.682 622.778 640.186 659.012 

2 1582.451 1582.942 1634.112 1691.407 1755.453 1827.476 1908.347 

3 2084.362 2085.047 2156.380 2236.481 2326.274 2427.501 2541.321 

4 2518.654 2519.274 2582.970 2652.549 2728.168 2810.750 2901.249 

 

Table 4: First four natural frequencies 𝜔𝑛 (rad/s) of the gradient truss for 𝑔 = 0.5 (m). 

𝜔𝑛 
Consistent mass matrix 

Akintayo [18]  

Consistent mass matrix 

Present study 

Consistent mass matrix 

Tsiatas et al. [19]  

1 614.58 659.01 650.292 

2 1722.51 1908.35 1718.49 

3 2280.05 2541.32 2273.35 

4 2689.55 2901.25 2564.37 

 

4 CONCLUSIONS  

This paper investigates the dynamic response of planar trusses using a simplified, engineering-

oriented SGE theory. To this end, a two-node bar element with two degrees of freedom per node 

was developed. The proposed rigid-node formulation of the SGE theory maintains the same 

number of degrees of freedom as CE theory, differing only in the modified stiffness, which 

accounts for microstructural length-scale effects. The method is straightforward to implement 

and produces static and dynamic results that closely match those obtained using the elastic node 

formulation. 
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