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Investigation of the influence of material microstructure on the dynamic

behavior of trusses
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Giannakopoulos®, Panagiotis Tsopelas®

ABSTRACT

In this study, the influence of the material’s microstructure on the dynamic behavior of planar
trusses is investigated. Since classical elasticity (CE) theory is insufficient to accurately
describe the mechanical behavior of structures whose dimensions are comparable to those of
their microstructure, higher-order elasticity theories are required. In this work, the strain
gradient elasticity (SGE) theory is employed, under the assumption that neglecting the
additional degrees of freedom it introduces yields similar results with minimal deviation. The
analysis is conducted using the finite element method with linear shape functions, thus
avoiding the computational burden associated with the exact shape functions. The impact of
the gradient elasticity theory is reflected by introducing the characteristic length into the
governing differential equation. In all cases, the influence of the material’s microstructure is
examined, and valuable conclusions are drawn regarding their dynamic behavior.

Keywords: Strain gradient elasticity, Finite Element Method, Material’s Microstructure, Planar
trusses, Eigenfrequencies, Mode shapes

1 INTRODUCTION

Strain gradient elasticity (SGE) theories enhance classical elasticity (CE) by incorporating
higher-order strain terms, enabling the modeling of size-dependent mechanical behaviors. While
CE assumes stress at a point is a function of local strain only, SGE theories account for strain
gradients, making them particularly effective in capturing microstructural effects at nano- and
micro-scales. Recently, there has been growing interest in applying these theories to meso- and
macro-scale structures for refined analysis across broader engineering applications. In structural
mechanics, especially for bars and beams, classical models like Euler—Bernoulli and Timoshenko
often fail to capture size effects, leading to discrepancies in predicted behavior. SGE-based

! Bachelor student S.A.M.P.S., National Technical University of Athens, ge20128@mail.ntua.gr
2 Assoc. Professor S.A.M.P.S., National Technical University of Athens, gtsiatas@central.ntua.gr
3 Assist. Professor Civil Engineering, University of West Attica, achar@uniwa.gr

4 Professor S.A.M.P.S., National Technical University of Athens, agiannak@central.ntua.gr

3 Professor S.A.M.P.S., National Technical University of Athens, tsopelas@central.ntua.gr



mailto:ge20128@mail.ntua.gr
mailto:gtsiatas@central.ntua.gr
mailto:achar@uniwa.gr
mailto:agiannak@central.ntua.gr
mailto:tsopelas@central.ntua.gr

CINEAMTE

AOHNA 30, 31 OKT, 1 NOE 2025

formulations address these shortcomings and have demonstrated improved accuracy in analyzing
composite materials [1], pretwisted beams [2], cellular beams [3], and flexoelectric beams [4].

This study investigates the static and dynamic response of planar trusses using the finite element
method within the simplified, engineering-oriented SGE framework developed by Sulem and
Vardoulakis [5]. This SGE theory, as demonstrated by Giannakopoulos et al. [6], combines ease
of implementation with improved validity, making it well-suited for practical applications. It has
been successfully applied to bar tension [7], beam bending and stability [8], beam dynamics [9],
cantilever bending and cracked bar problems [10], and Timoshenko beam analysis [11]. While
most finite element (FE) formulations for strain gradient elasticity (SGE) have focused on bars
and beams [12-17], planar trusses have received comparatively little attention. To date, only
Akintayo [18] and Tsiatas et al. [19] addressed planar trusses, developing a two-node bar element.
The latter formulation adopts the elastic node approach and introduces a gradient bar element
with four degrees of freedom: two classical and two non-classical. The classical degrees of
freedom represent axial displacements, whereas the non-classical ones correspond to axial strains.

In the present study, we extend the fundamental assumption of trusses—that members are pinned
and therefore transmit only axial forces, not moments—by further postulating that axial strains
at the member ends are also constrained. Specifically, the axial strains at the bar ends are
prescribed a priori to be zero, thereby reducing the active degrees of freedom to the classical ones
alone. Within this framework, the rigid node approach of SGE yields the same number of degrees
of freedom as the CE theory, differing only in the modified stiffness to account for microstructural
length effects. The method is straightforward to implement and produces static and dynamic
results that closely match those from the elastic node formulation [19]. Additionally, comparisons
with classical elasticity (CE) using consistent and lumped mass matrices provide valuable
insights.

2 GRADIENT TRUSS ELEMENT: THE RIGID NODE APPROACH

Building on the work of Tsiatas et al. [19], the rigid node assumption is adopted by enforcing
zero axial strains at the bar ends. Under this assumption, the stiffness matrix of a planar gradient
truss element—characterized by length L., cross-sectional area A,, modulus of elasticity E,, and
material density p,—is expressed as:

@
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where k, = g/L, being the ratio of the microstructural length, g, over the element’s length, L,.

To investigate the influence of the material microstructural length parameter g on the dynamic
behavior of planar trusses, both the consistent and lumped mass matrices of the CE theory are
employed. The consistent mass matrix in CE theory is expressed as:
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while the corresponding lumped mass matrix simplifies to:
1 0 0 O
CEJlum _ Pedele|l0 1 0 0 3)
€ 2 0 01 0
0 0 0 1

Finally, to incorporate the orientation of each element, a transformation matrix is employed. The
direction cosines, cos ¢° and sin ¢°, facilitate the conversion of local generalized nodal forces,
f¢, into the global coordinate system, f§, as:

fs = RI'T, *)
where
cos @€  sin® 0 0
. e e
R = Sl(r)1 v COSE)‘/’ COSO @€ sinogae ’ ©)
0 0 —sin@p® cos @°

is the transformation matrix of the truss element.

It is worth noting that Akintayo [18] also adopted the rigid node assumption, albeit by enforcing
a different set of boundary conditions, which yields the following stiffness matrix:
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3  STATICALLY DETERMINATE GRADIENT TRUSS
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In this section, we analyze a statically determinate gradient truss (see Figure 1). Each truss
member has a circular cross-section with a diameter of D = 20 mm and material properties of
E = 210 GPa, p = 7850 kg/m. The truss is supported by pins at nodes 1 and 3, where all
geometric boundary conditions are zero, while nodes 2 and 4 have all their degrees of freedom
(DoF) unrestrained and free to move.

We begin with a static analysis under a load of P = 100 kN. The resulting displacements at
various DoFs are summarized in Table 1 for different values of the microstructural length g. For
comparison, displacements predicted by classical elasticity (CE) theory, obtained using a finite
element (FE) formulation, show excellent agreement with strain gradient elasticity (SGE) theory
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results when g = 0.001 m. Overall, as g increases, displacements decrease, reflecting the
stiffening effect of the truss.

To further highlight the deviations among the different theoretical approaches, Table 2 reports
the displacements at the same DoF for g = 0.5 m. The results demonstrate that the present study
provides values closer to those of the more accurate elastic node approach [19], compared to the
formulation of Akintayo [18].
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Figure 1: Geometry and loading of the gradient truss.

Table 1: Displacements (m) of the gradient truss at various DoF for various values of the
microstructural length g (m).

DoF FEM g=0001 g=01 g=202 g=203 g=04 g =205
u; -0.006821 -0.006816 -0.006366 -0.005911 -0.005457 -0.005004 -0.004559
u, -0.028799 -0.028787 -0.027511 -0.026223 -0.024934 -0.023647 -0.022366
ug -0.034863 -0.034847 -0.033271 -0.031679 -0.030088 -0.028498 -0.026915

Table 2: Displacements (m) at various DoF for g = 0.5 (m).

DOF Rigid node Rigid node Elastic node
Akintayo [18] Present study Tsiatas et al. [19]
Us -0.005684 -0.004559 -0.004735
Uy -0.025578 -0.022366 -0.022880
Ug -0.030884 -0.026915 -0.027671

The dynamic response of the gradient truss was also investigated. The first four natural
frequencies, w, (rad/s), for various values of g are presented in Table 3, employing the
consistent mass matrix of the CE theory. As g increases, w,, generally rises, although the effect
is less pronounced at lower frequencies. For further comparison, Table 4 presents the first four
natural frequencies for g = 0.5 m. Again, the present formulation predicts the fundamental
frequency more accurately than Akintayo’s formulation [18].
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Table 3: First four natural frequencies w,, (rad/s) of the gradient truss for various values of the
microstructural length g (m).

FEM g=0001 g=01 g=02 g=03 g=04 g=05
577.875 578009  591.759  606.682  622.778  640.186  659.012
1582451 1582.942  1634.112 1691.407 1755453 1827.476 1908.347
2084362 2085.047 2156380 2236.481 2326274 2427.501 2541.321

2518.654  2519.274  2582.970 2652.549 2728.168 2810.750 2901.249

-wa»—lt:S

Table 4: First four natural frequencies w,, (rad/s) of the gradient truss for g = 0.5 (m).

Consistent mass matrix  Consistent mass matrix Consistent mass matrix

“n Akintayo [18] Present study Tsiatas et al. [19]
1 614.58 659.01 650.292
2 1722.51 1908.35 1718.49
3 2280.05 2541.32 2273.35
4 2689.55 2901.25 2564.37
CONCLUSIONS

This paper investigates the dynamic response of planar trusses using a simplified, engineering-
oriented SGE theory. To this end, a two-node bar element with two degrees of freedom per node
was developed. The proposed rigid-node formulation of the SGE theory maintains the same
number of degrees of freedom as CE theory, differing only in the modified stiffness, which
accounts for microstructural length-scale effects. The method is straightforward to implement
and produces static and dynamic results that closely match those obtained using the elastic node
formulation.
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